LES RESEARCH

Postoperative Cervical Haematoma Complicated by Ipsilateral Carotid Thrombosis and Aphasia After Anterior Cervical Fusion: a Case Report

By Dr. Kingsley Chin

Scientific Paper

Chin KR1, Seale JButron VCumming V.

Interested medical professionals can read the full paper, as published in Case Reports in Medicine, here.

Abstract

Hematoma alone is the most common vascular complication reported after anterior cervical decompression and fusion (ACDF). We present this case to report the occurrence of postoperative cervical hematoma complicated by ipsilateral carotid thrombosis and aphasia after an uncomplicated C4-6 ACDF. This is a case of a 65-year-old woman who underwent revision fusions of the C4-5 and C6-7 levels complicated by postoperative cervical hematoma and carotid thrombosis. The patient’s history, clinical examination, imaging findings, and treatment are reported. The revision fusions were performed and deemed routine. Approximately eight hours later 200 mL of blood was evacuated from a postoperative cervical hematoma. The patient became unresponsive and disoriented a few hours after evacuating the hematoma. Computed tomography and magnetic resonance imaging of the brain were normal, but magnetic resonance angiography demonstrated total occlusion of the left carotid artery. Thrombectomy was performed and the patient was discharged without residual deficits. At the latest followup she is fully functional and asymptomatic in her neck. We suggest, after evacuating a cervical hematoma, an evaluation of the carotids be made with MRA or cerebral angiography, as this may demonstrate a clot before the patient develops symptoms.

Introduction

Anterior cervical decompression and fusion (ACDF), a common treatment for cervical disc disease, is associated with good outcomes and low complication rates [15]. Complications can be devastating, especially hematoma, vascular injury, esophageal injury, neurological deficits, or graft dislodgement [469]. Complications related to the carotid artery during ACDF are rare [10], and thrombosis has never been reported in association with a postoperative cervical hematoma, although interruption of laminar blood flow during retraction is documented [11].

We report a case of postoperative cervical hematoma complicated by ipsilateral carotid thrombosis and aphasia after a revision ACDF at C4-5 and C6-7 for adjacent segment disease. This case is presented to share the first documented case including this series of complications and to be instructive in sharing our management experience.

Case Presentation

A 65-year-old female patient with a body mass index of 19.2 kg/m2 and past medical history including hepatitis C treated with interferon, Lyme disease, hypertension, osteoarthritis, lumbar laminectomy and fusion, C5-6 fusion, hysterectomy, and breast biopsy presented with multilevel spondylosis and adjacent level breakdown at C4-5 and C6-7.

She underwent revision fusions of C4-5 and C6-7 levels with interbody PEEK cage (Invibio PEEK Optima), demineralized bone matrix, and cervical plates (SpineFrontier Indus InVue cervical plate, Beverly, MA, USA). These procedures were completed via a left-sided approach. Hemostasis was achieved before closing the wound. This procedure was completed and was deemed routine without surgical, anesthetic, or cord monitoring complications.

Approximately 8 hours later swelling of the anterior neck was noted. This was assessed as a hematoma of the cervical spine causing airway compromise. Immediately the patient was returned to the operating suite for an urgent evacuation of the hematoma. Approximately 200 mL clotted blood was drained. Active oozing was noted from the muscles and cauterized. The wound was irrigated without force, then collagen sponge and gelatin matrix hemostatic sealant around the muscle areas were placed. After Penrose drain replacement and wound closure, excessive bleeding was noted, so the wound was reopened and more collagen sponge and thrombin were used along with cauterization. A bulb drain was placed with a 1/4 inch Penrose and the wound was closed.

Later that evening, the patient became increasingly disoriented and eventually unresponsive to commands. Clinically posterior fossa dysfunction was assessed with the patient obtunded and eyes gazing downward. The possibility of a cerebrovascular accident (CVA) in the posterior fossa was considered and computed tomography (CT) brain ordered. CT brain was normal and MRI demonstrated no acute infarct; however magnetic resonance angiography (MRA) revealed total occlusion of the left common carotid artery, including the bifurcation and external carotid artery with some reconstitution of the internal carotid at the level of the siphon from collateral blood flow (Figure 1). Therefore, without delay, vascular surgeons performed exploration and thrombectomy of the left carotid artery. The vascular surgeon commented only on the large size of the thrombus. There was no obvious intimal damage or arteriosclerosis as reported postoperatively. After all vascular clamps were released and good pulsations obtained in the entire common, external, and internal carotid arteries, the heparin injected prior to clamping was reversed with protamine sulfate and hemostasis was considered satisfactory. Another Penrose drain was left in the surgical bed.

MRA postoperative day 2 demonstrates total occlusion of the left common carotid artery, including bifurcation and external carotid artery.

Our patient’s hospital stay was further complicated by an acute right brachial deep vein thrombosis secondary to a line in situ, and a heparin-induced thrombocytopenia. She also suffered a reactive leucocytosis immediately postoperatively and a nosocomial (MSSE) pneumonia. However, the patient was discharged from hospital on postoperative day 20 without any residual deficits, and at her latest followup at nine months she is fully functional and asymptomatic in her neck. Of note: our patient, since these reported procedures, had occipital and external carotid artery embolization performed, the coils and clips are obvious on X-ray (Figure 2). These procedures were completed by a separate team of vascular surgeons for discrete indications and are not directly related to the reported events herewith.

LI_Social_Blog_PostoperativeCervicalHaematoma1.jpg

Postoperative lateral radiograph showing fixation at 9 months. (Please note: clips and coils postembolization of the occipital and external carotid arteries apparent in the anterolateral left neck.)

Discussion

Virchow’s triad describes three broad categories which contribute to the development of thrombosis: stasis, endothelial damage, and/or hypercoagulability. In this case our patient was not in a hypercoagulable state as evidenced by the hematoma and her normal liver function and bleeding indices, despite a history of hepatitis C [12]. No endothelial damage was identified at thrombectomy in this case, and considering that her aphasia developed after removal of the hematoma, it is our suspicion that the hematoma compressed the carotid artery enough to decrease laminar blood flow inducing stasis and providing a nidus for the development of a thrombus. Chronic long-term occlusion of the carotid may be another explanation of this patient’s second event postoperatively certainly, but her medical history yielded no prior report of CVA-type events. This may have been masked, however, by compensatory mechanisms such as elevated oxygen extraction fraction improvement and/or improvements in blood flow with chronic occlusion [13].

It is unknown whether she would have developed aphasia from compression within the same time frame had we not removed the hematoma; nonetheless, our experience should raise awareness and prompt prophylactic action before evacuating a hematoma.

Conclusion

Our literature review yielded no prior cases detailing similar complications. This case documents perhaps the first report of this occurrence, is instructive, and raises awareness. We suggest after evacuating a cervical hematoma, especially in patients with risk factors, an evaluation of the carotids be made with MRA, Doppler ultrasonography, intraoperative pulse examination, or cerebral angiography as this may demonstrate a clot before the patient develops symptoms.

About Author Dr. Kingsley R. Chin

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin is a board-certified Harvard-trained Orthopedic Spine Surgeon and Professor with copious business and information technology exposure. He sees a niche opportunity where medicine, business and info. tech meet – and is uniquely educated at the intersection of these three professions. He has experience as Professor of Clinical Biomedical Sciences & Admissions Committee Member at the Charles E. Schmidt College of Medicine at Florida Atlantic University, Professor of Clinical Orthopedic Surgery at the Herbert Wertheim College of Medicine at Florida International University, Assistant Professor of Orthopaedics at the University of Pennsylvania Medical School, Visiting Spine Surgeon & Professor at the University of the West Indies, Mona, and Adjunct Professor of Clinical Biomedical Sciences at the University of Technology, Jamaica.

Learn more about Dr. Chin here and connect via LinkedIn.

About Less Exposure Surgery

Less Exposure Surgery (LES) is based on a new philosophy of performing surgery, leading the charge to prove through bench and clinical outcomes research that LES treatment options are the best solutions – to lowering the cost of healthcare, improving outcomes and increasing patient satisfaction. Learn more at LESSociety.org.

The LES Society philosophy: “Tailor treatment to the individual aiding in the quickest recovery and return to a pain-free lifestyle, using LES® techniques that lessen exposure, preserve unoffending anatomy and utilize new technologies which are safe, easy to adopt and reproducible. These LES®techniques lessen blood loss, surgical time and exposure to radiation and can be safely performed in an outpatient center. Less is more.” – Kingsley R. Chin, MD

About The LESS Institute

The LESS Institute is the world leader center of excellence in Less Exposure Surgery. Our safe, effective outpatient treatments help patients recover quickly, avoid expensive hospital stays and return home to their family the same day. Watch our patient stories, follow us on Facebook and visit TheLESSInstitute.com to learn more.

About SpineFrontier

The above study utilized LES Technology from SpineFrontier – leading provider of LES Technologies and instruments – offering surgeons and patients superior technology and services.

Scientific Paper Author & Citation Details

Authors

Chin KR1, Seale JButron VCumming V.

Author information

  1. Charles E. Schmidt College of Medicine, Florida Atlantic University and Institute for Modern and Innovative Surgery (iMIS), 1100 W. Oakland Park Boulevard, Suite No. 3, Fort Lauderdale, FL 33311, USA.

“White Cord Syndrome” of Acute Tetraplegia After Anterior Cervical Decompression and Fusion for Chronic Spinal Cord Compression: a Case Report

By Dr. Kingsley Chin

LI_Social_Blog_WhiteCordSyndrome-600x510.jpg

Scientific Paper

Chin KR1, Seale JCumming V.

Interested medical professionals can read the full paper, as published in Case Reports in Orthopedics, here.

Abstract

Paralysis is the most feared postoperative complication of ACDF and occurs most often due to an epidural hematoma. In the absence of a clear etiology, inadequate decompression or vascular insult such as ischemia/reperfusion injury are the usual suspects. Herewith we report a case of complete loss of somatosensory evoked potentials (SSEPs) during elective ACDF at C4-5 and C5-6 followed by postoperative C6 incomplete tetraplegia without any discernible technical cause. A postoperative MRI demonstrated a large area of high signal changes on T2-weighted MRI intrinsic to the cord “white cord syndrome” but no residual compression. This was considered consistent with spinal cord gliosis with possible acute edema. The acute decompression of the herniated disc resulted in cord expansion and rush-in reperfusion. We postulate that this may have led to disruption in the blood brain barrier (BBB) and triggered a cascade of reperfusion injuries resulting in acute neurologic dysfunction. At 16 months postoperatively our patient is recovering slowly and is now a Nurick Grade 4.

Introduction

Anterior cervical decompression and fusion (ACDF) are commonly performed procedures for conditions resulting in symptomatic nerve root and/or spinal compression anteriorly. ACDF is associated with favorable fusion rates and good outcomes [14]. Paralysis is extremely rare but the most feared among postoperative complications [5]. Paralysis is most often due to an epidural hematoma, but in the absence of clear etiology, inadequate decompression or vascular insult such as ischemia/reperfusion injury possibly due to oxygen-derived free radical damage [68] are the usual suspects. Oxygen-derived free radicals seem implicated in neuronal injury as are mitochondria-dependent apoptosis, TNF-α production, and specific phospholipid signaling cascades [911].

We report a case of complete loss of somatosensory evoked potentials (SSEPs) during elective ACDF at C4-5 and C5-6 followed by postoperative C6 incomplete tetraplegia without any discernable technical cause. We describe this occurrence as a “white cord syndrome” because of the postoperative appearance of a large area of cord edema behind the massive herniated disc seen on sagittal T2-weighted magnetic resonance imaging (MRI). The MRI appearance of the preoperative and postoperative management, outcome, and proposed pathophysiology of this syndrome are discussed.

Case Presentation

A 59-year-old male patient was referred to us with a MRI diagnosis of a large C5-6 herniated disc causing severe cord compression, neck pain, radiculomyelopathy, and ataxia. The patient gave a seven-month history of neck pain with shoulder radiation, pain in the lower back radiating to both legs, and balance difficulties. At initial examination cervical range of motion was limited (flexion, extension, left and right rotation), and he reported pain specifically at the end of extension. A markedly positive Hoffman’s sign (right > left) was elicited. He was assessed as Nurick Grade 3 at this initial visit and diagnosed with cervical radiculomyelopathy. MRI demonstrated a massive herniated nucleus pulposus at C5-6 with severe cord compression and myelomalacia at the level of the herniated disc (Figures 1 and 2).

Figure 1: Preoperative axial T2-weighted MRI showing severe C5-6 cord compression by a massive disc herniation.


Figure 2: Preoperative MRI sagittal showing large area of high signal intensity centered behind the massive C5-6 herniated disc.

The patient underwent C4-5 and C5-6 ACDF. Intraoperative electroneurophysiological monitoring was performed continuously throughout the surgical procedure. This involved spinal cord monitoring with somatosensory recordings (somatosensory evoked potentials (SSEPs)), nerve activity monitoring, cortical recordings, and motor evoked potentials (MEPs) are performed.

An interbody PEEK cage (8 mm) (Eminent Spine, Texas) was placed at the C5-6 level. After cage placement at C5-6 the surgical team was informed about diminished MEP signals. The cage was removed without any changes and so replacing and monitoring continued. The surgical procedure was repeated at the C4-5 level with partial corpectomies, discectomy, and placement of an 8 mm interbody PEEK cage. It was then reported that the diminished signal recordings were attributed to marked dysfunction of spinal cord conduction pathways. At this time there were no measureable MEPs, and so the PEEK cages were removed. The signal did not return with removal of the cages, so the patient was awoken and asked to move his limbs; he was able to move his arms only at the time. The procedure was urgently completed by replacing the interbodies and placing an anterior plate (SpineFrontier Inc., InVue plate, Beverly, MA, USA) between C4, C5, and C6. Postoperatively the patient demonstrated a C6 incomplete tetraplegia. MRI raised concerns about residual bony compression at C5 (Figure 3). MRI and CT were done emergently postoperatively which raised concern for residual bony compression mostly behind the C5 body and the edges of C4 and C6. The surgeon was concerned about a vascular/reperfusion phenomenon given the acute decompression of a severely and chronically compressed spinal cord. The patient was urgently returned to the operating room for more extensive decompression, and corpectomy at C5, to provide the cord with as much room possible for recovery. During the revised procedure SSEP responses from the left lower limb were noted to be poorly reproduced and to have very low amplitude but were noted to be present in the right lower limb. Transcranial MEPs were present and reproducible from upper limb but not lower limb muscle groups. This was deemed encouraging.

LI_Social_Blog_WhiteCordSyndrome_3.jpg

Figure 3: Immediate postoperative MRI after primary C4-5, C5-6 ACDF demonstrates residual C5 compression.

There were no cerebrospinal fluid (CSF) leaks or increased blood loss reported intraoperatively during this patient’s surgical procedures. In fact, from a surgical perspective the procedures were quite uneventful and uncomplicated apart from the complete loss of SSEPs.

Hydrocortisone 100 mg was given intravenously intraoperatively during the revised procedure. Subsequently, the patient was placed on acute inpatient rehabilitation in the intensive care unit for his C6 incomplete tetraplegia and an acute spinal cord injury steroid protocol [12] was begun and tapering intravenous dexamethasone was added.

At day 3 a postoperative MRI demonstrated a large area of high signal changes on T2-weighted MRI intrinsic to the cord (“white cord syndrome”) but no residual compression (Figure 4). Following intravenous administration of gadopentetate dimeglumine contrast at MRI postoperatively there was no pathologic enhancement of the spinal cord lesion, and therefore the hyperintense changes involving the cervical spine at the C5 level were considered consistent with spinal cord edema (Figure 3). When compared to the preoperative MRI, it was clearly present but partially masked by the large herniated disc. Day 2 postoperatively the patient was returned to the operating room to investigate any SSEP changes to and to see if there was continued recovery. There were no changes to SSEP compared with intraoperatively. The decision was then made to continue steroids and follow the patient clinically with serial MRIs. Within two days the patient moved both upper limbs and had 3/5 power in the toes.

Figure 4: Day 3 postoperative MRI demonstrates more clearly the spinal cord edema intrinsic to the cord—a “white cord syndrome.”

The patient was discharged to an inpatient rehabilitation facility at day four postoperatively without any signs of recovery. His bulbocavernosus reflex was equivocal. Gradually over the next two months, his bilateral upper limb strength improved to full strength except for 3+/5 left finger flexion, extension, and interossei. His right lower extremity also improved to full strength. His left lower extremity strength lagged substantially behind with grade 3/5 hip flexor, adductor, and abductor strength. At the latest 16-month followup he was still weak in his left finger flexion (3/5), finger extension and interossei (4/5), and his left lower limb with 5−/5 hip abduction power, 4/5 quadriceps and hamstrings, and 2/5 in all other muscle groups. Reflexes were 2+ except 1+ right triceps and 3+ at the left knee with sustained left ankle clonus. Sensation was decreased on the left hand, leg, and thigh. At this visit a Nurick Grade 4 and ASIA score D were assessed. A slight improvement in standing and walking was noted, but he still required an assistive frame to get around the house and a wheelchair outside (Table 1). Radiography and MRI reviewed at this visit confirmed fusion but demonstrated persistent gliosis (Figures 5 and 6).

Table 1: Rehabilitation assessment: American Spinal Injury Association (ASIA) scores.

Figure 5: Sagittal CT reconstruction at the latest followup shows graft consolidation confirming fusion.

LI_Social_Blog_WhiteCordSyndrome6.jpg

Figure 6: Sagittal T2-weighted MRI at the latest 16-month followup showing a persistent “white cord syndrome.”

Discussion

In this patient, a massive herniated disc seemed to have compressed the cord chronically and produced a large area of cord edema, but the patient had compensated. Over time his radiculomyelopathic symptoms progressed and he sought surgical treatment. The acute decompression of the herniated disc resulted in immediate cord expansion within the open canal space, and the compressed segment of the cord exposed to a rush in blood supply. We postulate that this sudden cord expansion and reperfusion may have lead to disruption in the blood brain barrier (BBB), or in the blood spinal cord barrier, and triggered a cascade of reperfusion injury resulting in acute neurologic dysfunction at and below the C6 level. The MRI appearance on sagittal T2-weighted MRI and the clinical results of incomplete paralysis without a clear understanding of the pathophysiology of this condition led us to use the term “white cord syndrome.”

A cohort study reported by Seichi et al. in 2004 followed more than one hundred patients with MRI three weeks postlaminoplasty to determine the frequency of swelling of the spinal cord with an intramedullary lesion and the possible mechanism of postoperative motor paresis of the upper extremity [13]. They reported a 6.1% incidence of postoperative abnormal expansion of the T2 high signal intensity area; of which 43% were asymptomatic. The upper motor paresis described in their cohort was strongly related to distal and diffuse type of postoperative paresis of the upper extremity without deterioration of lower motor function. This report was the only other description of similar MRI findings as what we experienced with our patient. That being said, our patient’s presentation was more dramatic after ACDF and followed a different pattern of motor paresis from that described in the previously mentioned postlaminoplasty cohort.

Spinal cord ischemia/reperfusion injury appears contingent on oxygen-derived free radical damage [68], mitochondria-dependant apoptosis, TNF-α production, and specific phospholipid signaling cascades resulting in neuronal injury in human and animal models [9111416]. It has been suggested that acute and chronic spinal cord ischemic injury may in fact induce the passage of blood borne or neurotrophic substances (specifically TNF- α) through the BBB past its saturation point [141618]. It appears that decoupling of astrocyte foot processes from endothelial cell surfaces inhibits tight junction function in the BBB [151920]. Transport systems and ionic buffering would then be disrupted allowing worsened reperfusion injury upon decompression of a previously ischemic spinal cord.

To date substantial efforts have focused on the mitigation of spinal cord ischemic injury. These efforts have included surgical techniques (such as timing of surgical decompression, temporary shunts, or partial bypass), pharmacological interventions (such as methylprednisolone), and mechanical methods (e.g., hypothermia or drainage of cerebrospinal fluid) [182126]. More recently it has been suggested that potent antioxidants may also play a role in the management of spinal cord ischemic/reperfusion injury [7].

In our case described herewith, MRI performed at day 1 postoperatively demonstrated gliosis. However, there remains much debate about the clinical relevance of high signal intensity on the T2-weighted MR images. The debate extends to the reversibility of the spinal cord edema also [27]. It should be noted that the increased T2-weighted signal intensity was present even before the decompression, so demyelination may also be a possibility in this patient. We highlight these factors simply to reflect on the different possible reasons for the edema and the increased signal intensity.

We have presented this theory as to the pathophysiology behind this patient’s intra- and postoperative complications as there was no clinically significant hematoma or CSF leakage reported that could have led to a pseudomeningocele and made a more plausible explanation of our findings.

In light of the proposed etiologies implicated in triggering this syndrome [67911] the clinical presentation of this patient is instructive in raising awareness. The management of this “white cord syndrome” will conceivably include adequate surgical decompression and pharmacological treatment options [7182126]. However, patients and surgeons should be aware of the potential catastrophic results after a seemingly routine ACDF to treat a large herniated disc with severe and chronic cord compression. This patient had motor function return fairly rapidly within two months but slowed down substantially in the ensuing months. This may help the surgeon to advise patients. A full corpectomy is a good option in this scenario to ensure adequate decompression. Postoperative SSEP monitoring is an option to monitor recovery during the immediate postoperative period. The use of steroids should be individually weighed against the risks.

About Author Dr. Kingsley R. Chin

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin is a board-certified Harvard-trained Orthopedic Spine Surgeon and Professor with copious business and information technology exposure. He sees a niche opportunity where medicine, business and info. tech meet – and is uniquely educated at the intersection of these three professions. He has experience as Professor of Clinical Biomedical Sciences & Admissions Committee Member at the Charles E. Schmidt College of Medicine at Florida Atlantic University, Professor of Clinical Orthopedic Surgery at the Herbert Wertheim College of Medicine at Florida International University, Assistant Professor of Orthopaedics at the University of Pennsylvania Medical School, Visiting Spine Surgeon & Professor at the University of the West Indies, Mona, and Adjunct Professor of Clinical Biomedical Sciences at the University of Technology, Jamaica.

Learn more about Dr. Chin here and connect via LinkedIn.

About Less Exposure Surgery

Less Exposure Surgery (LES) is based on a new philosophy of performing surgery, leading the charge to prove through bench and clinical outcomes research that LES treatment options are the best solutions – to lowering the cost of healthcare, improving outcomes and increasing patient satisfaction. Learn more at LESSociety.org.

The LES Society philosophy: “Tailor treatment to the individual aiding in the quickest recovery and return to a pain-free lifestyle, using LES® techniques that lessen exposure, preserve unoffending anatomy and utilize new technologies which are safe, easy to adopt and reproducible. These LES®techniques lessen blood loss, surgical time and exposure to radiation and can be safely performed in an outpatient center. Less is more.” – Kingsley R. Chin, MD

About The LESS Institute

The LESS Institute is the world leader center of excellence in Less Exposure Surgery. Our safe, effective outpatient treatments help patients recover quickly, avoid expensive hospital stays and return home to their family the same day. Watch our patient stories, follow us on Facebook and visit TheLESSInstitute.com to learn more.

About SpineFrontier

The above study utilized LES Technology from SpineFrontier – leading provider of LES Technologies and instruments – offering surgeons and patients superior technology and services.

Scientific Paper Author & Citation Details

Authors

Chin KR1, Seale JCumming V.

Author information

  1. Charles E. Schmidt College of Medicine, Florida Atlantic University and Institute for Modern & Innovative Surgery (iMIS), 1100 W. Oakland Park Boulevard, Suite No. 3, Fort Lauderdale, FL 33311, USA ; iMIS Surgery, 1100 W. Oakland Park Boulevard, Suite No. 3, Fort Lauderdale, FL 33311, USA.

Postoperative Magnetic Resonance Imaging Assessment for Potential Compressive Effects of Retained Posterior Longitudinal Ligament After Anterior Cervical Fusions: a Cross-Sectional Study

By Dr. Kingsley Chin

Scientific Paper

Chin KR1, Ghiselli GCumming VFurey CGYoo JUEmery SE.

Interested medical professionals can read the full paper, as published in Spine, here.

Study Design

A cross-sectional study.

Objective

To assess using postoperative magnetic resonance imaging whether the posterior longitudinal ligament (PLL) caused residual cord compression after anterior cervical decompression and fusion (ACDF) in a series of patients in whom the PLL was retained.

Summary of Background Data

There is a lack of data evaluating the postoperative compressive effects of the PLL in patients undergoing ACDF providing guidance as to whether to remove or retain the PLL during discectomy to facilitate adequate decompression.

Methods

Postoperative gadolinium enhanced magnetic resonance images were reviewed in a series of 33 patients who underwent ACDF for cervical radiculomyelopathy and who had persistent or recurrent postoperative symptoms. Patients with ossification of the posterior longitudinal ligament or with a herniated disc behind the PLL were excluded from this study.

Results

There were no cases of discernible compression by the retained PLL identified on the magnetic resonance image (P < 0.001) as assessed by 2 independent reviewers. Four patients underwent subsequent revision surgery unrelated to the PLL.

Conclusion

We were unable to demonstrate magnetic resonance imaging evidence to suggest that the retained PLL caused compression after ACDF in this patient cohort. Therefore we suggest that removing the PLL should be considered for reasons other than concern about residual compression.

About Author Dr. Kingsley R. Chin

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin is a board-certified Harvard-trained Orthopedic Spine Surgeon and Professor with copious business and information technology exposure. He sees a niche opportunity where medicine, business and info. tech meet – and is uniquely educated at the intersection of these three professions. He has experience as Professor of Clinical Biomedical Sciences & Admissions Committee Member at the Charles E. Schmidt College of Medicine at Florida Atlantic University, Professor of Clinical Orthopedic Surgery at the Herbert Wertheim College of Medicine at Florida International University, Assistant Professor of Orthopaedics at the University of Pennsylvania Medical School, Visiting Spine Surgeon & Professor at the University of the West Indies, Mona, and Adjunct Professor of Clinical Biomedical Sciences at the University of Technology, Jamaica.

Learn more about Dr. Chin here and connect via LinkedIn.

About Less Exposure Surgery

Less Exposure Surgery (LES) is based on a new philosophy of performing surgery, leading the charge to prove through bench and clinical outcomes research that LES treatment options are the best solutions – to lowering the cost of healthcare, improving outcomes and increasing patient satisfaction. Learn more at LESSociety.org.

The LES Society philosophy: “Tailor treatment to the individual aiding in the quickest recovery and return to a pain-free lifestyle, using LES® techniques that lessen exposure, preserve unoffending anatomy and utilize new technologies which are safe, easy to adopt and reproducible. These LES®techniques lessen blood loss, surgical time and exposure to radiation and can be safely performed in an outpatient center. Less is more.” – Kingsley R. Chin, MD

About The LESS Institute

The LESS Institute is the world leader center of excellence in Less Exposure Surgery. Our safe, effective outpatient treatments help patients recover quickly, avoid expensive hospital stays and return home to their family the same day. Watch our patient stories, follow us on Facebook and visit TheLESSInstitute.com to learn more.

About SpineFrontier

The above study utilized LES Technology from SpineFrontier – leading provider of LES Technologies and instruments – offering surgeons and patients superior technology and services.

Scientific Paper Author & Citation Details

Authors

Chin KR1, Ghiselli GCumming VFurey CGYoo JUEmery SE.

Author information

  1. Institute for Modern & Innovative Surgery (iMIS), Fort Lauderdale, FL 33311, USA. Kingsleychin@gmail.com

Less Exposure Surgery for Multilevel Anterior Cervical Fusion Using 2 Transverse Incisions

By Dr. Kingsley Chin

autumn-goodman-242803-700x510.jpg

Scientific Paper

Chin KR1, Ricchetti ETYu WDRiew KD.

Interested medical professionals can read the full paper, as published in the Journal of Neurosurgery, here.

Abstract

Multilevel anterior cervical fusion often necessitates a large extensile incision for exposure and substantial retraction of the esophagus for placing long plates, potentially predisposing patients to complications such as dysphagia, dysphonia, and neurovascular injury. To the authors’ knowledge, the use of 2 incisions as an option has not been published, and so it is not intuitive to young surgeons or widely practiced. In this report, the authors discuss the advantages and raise awareness of using 2 incisions for multilevel anterior cervical fusion, and they document a safe skin bridge length. They also describe the advantages of using 2 incisions for performing multilevel anterior cervical fusion either at contiguous or noncontiguous levels as in adjacent-segment disease. By using the 2-incision technique, the authors made the surgery technically easier and diminished the amount of esophageal retraction otherwise needed through 1 long transverse or longitudinal incision. A skin bridge of 3 cm was safe.

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

About Author Dr. Kingsley R. Chin

Dr. Kingsley R. Chin is a board-certified Harvard-trained Orthopedic Spine Surgeon and Professor with copious business and information technology exposure. He sees a niche opportunity where medicine, business and info. tech meet – and is uniquely educated at the intersection of these three professions. He has experience as Professor of Clinical Biomedical Sciences & Admissions Committee Member at the Charles E. Schmidt College of Medicine at Florida Atlantic University, Professor of Clinical Orthopedic Surgery at the Herbert Wertheim College of Medicine at Florida International University, Assistant Professor of Orthopaedics at the University of Pennsylvania Medical School, Visiting Spine Surgeon & Professor at the University of the West Indies, Mona, and Adjunct Professor of Clinical Biomedical Sciences at the University of Technology, Jamaica.

Learn more about Dr. Chin here and connect via LinkedIn.

About Less Exposure Surgery

Less Exposure Surgery (LES) is based on a new philosophy of performing surgery, leading the charge to prove through bench and clinical outcomes research that LES treatment options are the best solutions – to lowering the cost of healthcare, improving outcomes and increasing patient satisfaction. Learn more at LESSociety.org.

The LES Society philosophy: “Tailor treatment to the individual aiding in the quickest recovery and return to a pain-free lifestyle, using LES® techniques that lessen exposure, preserve unoffending anatomy and utilize new technologies which are safe, easy to adopt and reproducible. These LES®techniques lessen blood loss, surgical time and exposure to radiation and can be safely performed in an outpatient center. Less is more.” – Kingsley R. Chin, MD

About The LESS Institute

The LESS Institute is the world leader center of excellence in Less Exposure Surgery. Our safe, effective outpatient treatments help patients recover quickly, avoid expensive hospital stays and return home to their family the same day. Watch our patient stories, follow us on Facebook and visit TheLESSInstitute.com to learn more.

About SpineFrontier

The above study utilized LES Technology from SpineFrontier – leading provider of LES Technologies and instruments – offering surgeons and patients superior technology and services.

Scientific Paper Author & Citation Details

Authors

Chin KR1, Ricchetti ETYu WDRiew KD.

Author information

  1. Institute for Modern & Innovative Surgery, Fort Lauderdale, Florida, USA. kingsleychin@gmail.com

Preclinical and Clinical Experience with a Viscoelastic Total Disc Replacement

By Dr. Kingsley Chin

pexels-photo-700x510.jpg

Scientific Paper

Rischke B1, Ross RS2, Jollenbeck BA3, Zimmers KB4, Defibaugh ND4.

Interested medical professionals can read through the full paper, as published in the International Journal of Spine Surgery, here.

Background 

The purpose of this study is to describe the mechanical durability and the clinical and radiographic outcomes of a viscoelastic total disc replacement (VTDR). The human intervertebral disc is a complex, viscoelastic structure, permitting and constraining motion in 3 axes, thus providing stability. The ideal disc replacement should be viscoelastic and deformable in all directions, and it should restore disc height and angle.

Methods

Mechanical testing was conducted to validate the durability of the VTDR, and a clinical study was conducted to evaluate safety and performance. Fifty patients with single-level, symptomatic lumbar degenerative disc disease at L4-5 or L5-S1 were enrolled in a clinical trial at 3 European sites. Patients were assessed clinically and radiographically for 2 years by the Oswestry Disability Index (ODI), a visual analog scale (VAS), and independent radiographic analyses.

Results

The VTDR showed a fatigue life in excess of 50 million cycles (50-year equivalent) and a physiologically appropriate level of stiffness, motion, geometry, and viscoelasticity. We enrolled 28 men and 22 women in the clinical study, with a mean age of 40 years. Independent quantitative radiographic assessment indicated that the VTDR restored and maintained disc height and lordosis while providing physiologic motion. Mean ODI scores decreased from 48% preoperatively to 23% at 2 years’ follow-up. Mean VAS low-back pain scores decreased from 7.1 cm to 2.9 cm. Median scores indicated that half of the patient population had ODI scores below 10% and VAS low-back pain scores below 0.95 cm at 2 years.

Conclusions

The VTDR has excellent durability and performs clinically and radiographically as intended for the treatment of symptomatic lumbar degenerative disc disease.

Clinical Relevance

The VTDR is intended to restore healthy anatomic properties and stability characteristics to the spinal segment. This study is the first to evaluate a VTDR in a 50-patient, multicenter European study.

About Author Dr. Kingsley R. Chin

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin is a board-certified Harvard-trained Orthopedic Spine Surgeon and Professor with copious business and information technology exposure. He sees a niche opportunity where medicine, business and info. tech meet – and is uniquely educated at the intersection of these three professions. He has experience as Professor of Clinical Biomedical Sciences & Admissions Committee Member at the Charles E. Schmidt College of Medicine at Florida Atlantic University, Professor of Clinical Orthopedic Surgery at the Herbert Wertheim College of Medicine at Florida International University, Assistant Professor of Orthopaedics at the University of Pennsylvania Medical School, Visiting Spine Surgeon & Professor at the University of the West Indies, Mona, and Adjunct Professor of Clinical Biomedical Sciences at the University of Technology, Jamaica.

Learn more about Dr. Chin here and connect via LinkedIn.

About Less Exposure Surgery

Less Exposure Surgery (LES) is based on a new philosophy of performing surgery, leading the charge to prove through bench and clinical outcomes research that LES treatment options are the best solutions – to lowering the cost of healthcare, improving outcomes and increasing patient satisfaction. Learn more at LESSociety.org.

The LES Society philosophy: “Tailor treatment to the individual aiding in the quickest recovery and return to a pain-free lifestyle, using LES® techniques that lessen exposure, preserve unoffending anatomy and utilize new technologies which are safe, easy to adopt and reproducible. These LES®techniques lessen blood loss, surgical time and exposure to radiation and can be safely performed in an outpatient center. Less is more.” – Kingsley R. Chin, MD

About The LESS Institute

The LESS Institute is the world leader center of excellence in Less Exposure Surgery. Our safe, effective outpatient treatments help patients recover quickly, avoid expensive hospital stays and return home to their family the same day. Watch our patient stories, follow us on Facebook and visit TheLESSInstitute.com to learn more.

About SpineFrontier

The above study utilized LES Technology from SpineFrontier – leading provider of LES Technologies and instruments – offering surgeons and patients superior technology and services.

Scientific Paper Author and Citation Details

Authors

Rischke B1, Ross RS2, Jollenbeck BA3, Zimmers KB4, Defibaugh ND4.

Author information

  1. Center of Orthopaedic and Spine Surgery, Zurich, Switzerland.

  2. Hope Hospital, Manchester, UK.

  3. Magdeburg Hospital, Magdeburg, Germany.

  4. AxioMed Spine Corporation, Garfield Heights, OH.

A Rare Anterior Sacral Osteochondroma Presenting as Sciatica in an Adult: a Case Report and Review of the Literature

By Dr. Kingsley Chin

7218540-700x510.jpg

Scientific Paper

Chin KR1, Kim JM.

Interested medical professionals can read through the full paper, as published in the Spine Journal, here.

Background Context

Osteochondroma is the most common primary benign bone tumor and is usually located in the metaphyses of long bones and rarely in the spine or anterior sacrum. To the best of our knowledge, en bloc excision of a solitary osteochondroma of the anterior sacrum in an adult patient has not been previously reported in a peer-reviewed journal.

Purpose

The purposes of this study were to document the first report of an osteochondroma of the anterior sacrum along with the clinical course and operative management and review the literature on solitary osteochondroma of the sacrum.

Study Design/Setting

The study setting is an academic institution. This is a case report and review of the literature.

Patient Sample

The patient is an adult female.

Outcome Measures

The outcome measure is the visual analog score for pain.

Methods

A 54-year-old woman presented with 9/10 disabling low back and radicular pain in the left lower extremity. Radiologic studies showed a pedunculated mass occurring from the anterior sacrum thought to be causing nerve root compression. The patient received en bloc excision of the mass through an abdominal retroperitoneal approach. We also conducted a literature review of solitary sacral osteochondroma in peer-reviewed journals.

Results

Histologic studies confirmed the mass to be an osteochondroma without pathologic signs of malignant transformation. The patient complained of dysesthesia in the left leg after surgery, which progressively improved completely over 8 months after the operation. At the 2-year follow-up, there was no evidence of local recurrence and she was pain free. A literature review revealed one previous case of en block resection of a solitary osteochondroma, but it involved the posterior sacrum.

Conclusions

Solitary osteochondroma can rarely present in the sacrum as low back pain and sciatica. In general, when osteochondroma causes pain in an adult, we should think that some structure is impinged or that it could have initiated a malignant transformation, so en bloc excision should be used to remove the tumor and histologic studies performed to assess for malignant transformation. Battered nerve root syndrome may take up to 8 months to resolve.

Copyright 2010 Elsevier Inc. All rights reserved.

 

About Author Dr. Kingsley R. Chin

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin is a board-certified Harvard-trained Orthopedic Spine Surgeon and Professor with copious business and information technology exposure. He sees a niche opportunity where medicine, business and info. tech meet – and is uniquely educated at the intersection of these three professions. He has experience as Professor of Clinical Biomedical Sciences & Admissions Committee Member at the Charles E. Schmidt College of Medicine at Florida Atlantic University, Professor of Clinical Orthopedic Surgery at the Herbert Wertheim College of Medicine at Florida International University, Assistant Professor of Orthopaedics at the University of Pennsylvania Medical School, Visiting Spine Surgeon & Professor at the University of the West Indies, Mona, and Adjunct Professor of Clinical Biomedical Sciences at the University of Technology, Jamaica.

Learn more about Dr. Chin here and connect via LinkedIn.

About Less Exposure Surgery

Less Exposure Surgery (LES) is based on a new philosophy of performing surgery, leading the charge to prove through bench and clinical outcomes research that LES treatment options are the best solutions – to lowering the cost of healthcare, improving outcomes and increasing patient satisfaction. Learn more at LESSociety.org.

The LES Society philosophy: “Tailor treatment to the individual aiding in the quickest recovery and return to a pain-free lifestyle, using LES® techniques that lessen exposure, preserve unoffending anatomy and utilize new technologies which are safe, easy to adopt and reproducible. These LES®techniques lessen blood loss, surgical time and exposure to radiation and can be safely performed in an outpatient center. Less is more.” – Kingsley R. Chin, MD

About The LESS Institute

The LESS Institute is the world leader center of excellence in Less Exposure Surgery. Our safe, effective outpatient treatments help patients recover quickly, avoid expensive hospital stays and return home to their family the same day. Watch our patient stories, follow us on Facebook and visit TheLESSInstitute.com to learn more.

About SpineFrontier

The above study utilized LES Technology from SpineFrontier – leading provider of LES Technologies and instruments – offering surgeons and patients superior technology and services.

Scientific Paper Author and Citation Details

Authors

Chin KR1, Kim JM.

Author information

  1. The Spine Service, Department of Orthopaedic Surgery, University of Pennsylvania Medical School, Philadelphia, PA 19104, USA. kingsleychin@iMISsurgery.com.

The Manubrium as an External Guide for Centralizing Anterior Cervical Plates: Technique Tips and Initial Experience

By Dr. Kingsley Chin

Scientific Paper

Chin KR1, Stieber JRMehta SCohen JDAuerbach JD.

Interested medical professionals can read the full paper, as published in Spine, here.

Study Design

Technique tips and retrospective review of prospectively collected data.

Objective

To describe a technique for centralizing cervical plates using the center of the manubrium as a primary external guide and its alignment with the mandible as a secondary guide.

Summary of Background Data

Proper alignment of cervical plates is desirable to avoid improper placement of screws and possibly altered biomechanical performance. Large body habitus may portend suboptimal exposure, a limited utility of skin surface landmarks for level determination, and may make it difficult to reliably centralize plates in the coronal plane during anterior cervical surgery.

Methods

We describe a technique that uses the center of the manubrium to determine the midline of the cervical spine and align a line drawn through the manubrium with the center of the mandible to provide a central axis for placing cervical plates along the entire cervical spine. We used anteroposterior fluoroscopy to validate that a line from the middle of the manubrium to the mandible bisected the spinous processes and midline of the vertebral bodies. We prospectively collected data on 39 consecutive patients undergoing anterior cervical discectomy and fusion with cervical plates using this technique.

Results

The mean amount of angulation and translation about a midline axis were 2.24 degrees +/- 1.49 degrees and 1.04 +/- 0.86 mm, respectively. There were no statistical differences among 1-level, 2-level, and 3-level fusions (P > 0.05). The intraobserver correlation coefficient for the measurement technique was R = 0.90 (P = 0.0016).

Conclusion

We validated that the midline of the cervical spine is in line with a straight bovie cord connecting the midline of the manubrium to the midline of the mandible using anteroposterior fluoroscopy. Using this line, we prospectively centered cervical plates with no significant difference between levels. These data may also serve as a benchmark for assessing cervical plate alignment.

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

About Author Dr. Kingsley R. Chin

Dr. Kingsley R. Chin is a board-certified Harvard-trained Orthopedic Spine Surgeon and Professor with copious business and information technology exposure. He sees a niche opportunity where medicine, business and info. tech meet – and is uniquely educated at the intersection of these three professions. He has experience as Professor of Clinical Biomedical Sciences & Admissions Committee Member at the Charles E. Schmidt College of Medicine at Florida Atlantic University, Professor of Clinical Orthopedic Surgery at the Herbert Wertheim College of Medicine at Florida International University, Assistant Professor of Orthopaedics at the University of Pennsylvania Medical School, Visiting Spine Surgeon & Professor at the University of the West Indies, Mona, and Adjunct Professor of Clinical Biomedical Sciences at the University of Technology, Jamaica.

Learn more about Dr. Chin here and connect via LinkedIn.

About Less Exposure Surgery

Less Exposure Surgery (LES) is based on a new philosophy of performing surgery, leading the charge to prove through bench and clinical outcomes research that LES treatment options are the best solutions – to lowering the cost of healthcare, improving outcomes and increasing patient satisfaction. Learn more at LESSociety.org.

The LES Society philosophy: “Tailor treatment to the individual aiding in the quickest recovery and return to a pain-free lifestyle, using LES® techniques that lessen exposure, preserve unoffending anatomy and utilize new technologies which are safe, easy to adopt and reproducible. These LES®techniques lessen blood loss, surgical time and exposure to radiation and can be safely performed in an outpatient center. Less is more.” – Kingsley R. Chin, MD

About The LESS Institute

The LESS Institute is the world leader center of excellence in Less Exposure Surgery. Our safe, effective outpatient treatments help patients recover quickly, avoid expensive hospital stays and return home to their family the same day. Watch our patient stories, follow us on Facebook and visit TheLESSInstitute.com to learn more.

About SpineFrontier

The above study utilized LES Technology from SpineFrontier – leading provider of LES Technologies and instruments – offering surgeons and patients superior technology and services.

Scientific Paper Author & Citation Details

Authors

Chin KR1, Stieber JRMehta SCohen JDAuerbach JD.

Author information

  1. The Institute for Minimally Invasive Spine Surgery (iMIS), Palm Beach, FL, USA. kingsleychin@iMISsurgery.com

The Surgeon as a Hand Patient: the Clinical and Psychological Impact of Hand and Wrist Fractures

By Dr. Kingsley Chin

marion-michele-191320-700x510.jpg

Scientific Paper

Chin KR1, Lonner JHJupiter BSJupiter JB.

Interested medical professionals can read through the full paper, also published in the Journal of Hand Surgery, here.

Abstract

To gain insight into the management of patients with hand and wrist injuries, a series of clinical and psychological analyses was performed on 9 surgeons, each of whom underwent operative fixation of a hand or wrist fracture. The results of these analyses suggest that the functional outcome after hand surgery was affected by the surgeons’ personality, motivation, and ability to accept and adapt to the injury, the nature of the injury, and the importance of the hand to the surgeons’ careers. Surgeons are highly motivated and compulsive individuals who consider their career involvement a major source of identity and self-worth. Most returned to their operative duties ahead of the schedule set by their hand surgeons (average, 25 days after surgery), regarded their injuries as a positive challenge, and changed their lifestyles after injury to protect their hands.

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

About Author Dr. Kingsley R. Chin

Dr. Kingsley R. Chin is a board-certified Harvard-trained Orthopedic Spine Surgeon and Professor with copious business and information technology exposure. He sees a niche opportunity where medicine, business and info. tech meet – and is uniquely educated at the intersection of these three professions. He has experience as Professor of Clinical Biomedical Sciences & Admissions Committee Member at the Charles E. Schmidt College of Medicine at Florida Atlantic University, Professor of Clinical Orthopedic Surgery at the Herbert Wertheim College of Medicine at Florida International University, Assistant Professor of Orthopaedics at the University of Pennsylvania Medical School, Visiting Spine Surgeon & Professor at the University of the West Indies, Mona, and Adjunct Professor of Clinical Biomedical Sciences at the University of Technology, Jamaica.

Learn more about Dr. Chin here and connect via LinkedIn.

About Less Exposure Surgery

Less Exposure Surgery (LES) is based on a new philosophy of performing surgery, leading the charge to prove through bench and clinical outcomes research that LES treatment options are the best solutions – to lowering the cost of healthcare, improving outcomes and increasing patient satisfaction. Learn more at LESSociety.org.

The LES Society philosophy: “Tailor treatment to the individual aiding in the quickest recovery and return to a pain-free lifestyle, using LES® techniques that lessen exposure, preserve unoffending anatomy and utilize new technologies which are safe, easy to adopt and reproducible. These LES®techniques lessen blood loss, surgical time and exposure to radiation and can be safely performed in an outpatient center. Less is more.” – Kingsley R. Chin, MD

About The LESS Institute

The LESS Institute is the world leader center of excellence in Less Exposure Surgery. Our safe, effective outpatient treatments help patients recover quickly, avoid expensive hospital stays and return home to their family the same day. Watch our patient stories, follow us on Facebook and visit TheLESSInstitute.com to learn more.

About SpineFrontier

The above study utilized LES Technology from SpineFrontier – leading provider of LES Technologies and instruments – offering surgeons and patients superior technology and services.

Scientific Paper Author and Citation Details

Authors

Chin KR1, Lonner JHJupiter BSJupiter JB.

Author information

  1. Hand Surgery Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, WACC 527, Boston, MA 02114, USA.

Lag Screw Fixation of Remote Bilateral Pedicle Fractures of the Fourth and Fifth Lumbar Vertebrae After a Single Gunshot Wound: a Case Report and Technical Pearl

By Dr. Kingsley Chin

sheshan-r-326380-700x510.jpg

Scientific Paper

Chin KR1, Boselli KCairone S.

Interested medical professionals can read through the full paper, as published in the Spine Journal, here.

Background Context

Of the injuries involving the lumbar spine, pedicle fractures are among the least common; those involving bilateral pedicles are rare.

Purpose

The aims of the study were to provide the first documentation of bilateral pedicle fractures at two consecutive levels after a gunshot, to review the mechanism of injury, and to evaluate a nonfusion treatment option for pedicle fractures.Summary of Background Data

Study Design

This is a technical note and case report.

Outcome Measure

The outcome measures were lumbar range of motion, return of motor and sensory functions, and return to normal activities.

Methods

A 20-year-old male sustained bilateral pedicle fractures at L4 and L5 with a massive dural tear, progressive neurologic deficits, and urinary incontinence. He underwent repair of the dural tear and lag screw fixation of the pedicle fractures without fusion.

Results

The patient had full range of motion of his lumbar spine, full strength in his lower extremities, and bladder control.

Conclusions

This is the first report of bilateral multilevel lumbar pedicle fractures after a single penetrating gunshot wound. The case documents this injury pattern after a gunshot, reviews the mechanism of injury, and presents the successful application of a nonfusion treatment option.

Copyright 2010 Elsevier Inc. All rights reserved.

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

About Author Dr. Kingsley R. Chin

Dr. Kingsley R. Chin is a board-certified Harvard-trained Orthopedic Spine Surgeon and Professor with copious business and information technology exposure. He sees a niche opportunity where medicine, business and info. tech meet – and is uniquely educated at the intersection of these three professions. He has experience as Professor of Clinical Biomedical Sciences & Admissions Committee Member at the Charles E. Schmidt College of Medicine at Florida Atlantic University, Professor of Clinical Orthopedic Surgery at the Herbert Wertheim College of Medicine at Florida International University, Assistant Professor of Orthopaedics at the University of Pennsylvania Medical School, Visiting Spine Surgeon & Professor at the University of the West Indies, Mona, and Adjunct Professor of Clinical Biomedical Sciences at the University of Technology, Jamaica.

Learn more about Dr. Chin here and connect via LinkedIn.

About Less Exposure Surgery

Less Exposure Surgery (LES) is based on a new philosophy of performing surgery, leading the charge to prove through bench and clinical outcomes research that LES treatment options are the best solutions – to lowering the cost of healthcare, improving outcomes and increasing patient satisfaction. Learn more at LESSociety.org.

The LES Society philosophy: “Tailor treatment to the individual aiding in the quickest recovery and return to a pain-free lifestyle, using LES® techniques that lessen exposure, preserve unoffending anatomy and utilize new technologies which are safe, easy to adopt and reproducible. These LES®techniques lessen blood loss, surgical time and exposure to radiation and can be safely performed in an outpatient center. Less is more.” – Kingsley R. Chin, MD

About The LESS Institute

The LESS Institute is the world leader center of excellence in Less Exposure Surgery. Our safe, effective outpatient treatments help patients recover quickly, avoid expensive hospital stays and return home to their family the same day. Watch our patient stories, follow us on Facebook and visit TheLESSInstitute.com to learn more.

About SpineFrontier

The above study utilized LES Technology from SpineFrontier – leading provider of LES Technologies and instruments – offering surgeons and patients superior technology and services.

Scientific Paper Author & Citation Details

Authors

Chin KR1, Boselli KCairone S.

Author information

  1. The Spine Service, Department of Orthopaedic Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA. kingsleychin@imissurgery.com

Preoperative Narcotic Use as a Predictor of Clinical Outcome: Results Following Anterior Cervical Arthrodesis

By Dr. Kingsley Chin

pexels-photo-235922-700x510.jpg

Scientific Paper

Lawrence JT1, London NBohlman HHChin KR.

Interested medical professionals can read the full paper, as published in Spine, here.

Study Design

Prognostic Study, Level II (Retrospective review of prospectively collected data).

Objective

To identify an association between preoperative narcotic use and clinical outcome after cervical arthrodesis.

Summary of Background Data

Little data exists regarding the influence that chronic preoperative narcotic use has on clinical outcomes after surgery. Cervical arthrodesis is a common procedure that has a predictably high success rate for relief of radicular pain. In addition, the patient population presenting for this procedure has a high propensity for preoperative narcotic use.

Methods

Charts and prospectively collected questionnaires concerning the use of pain medication from 91 consecutive patients who underwent cervical arthrodesis for relief of radicular pain by a single surgeon at a single institution were reviewed. Group I consisted of 47 patients who took narcotic pain medication for their radicular pain on a daily basis for greater than 6 months before surgery. Group II consisted of 44 patients who were not on narcotics chronically before surgery. Postoperative narcotic use and patient outcome based on the modified Robinson criteria were assessed. Patients were observed for a minimum of 2 years.

Results

Of the group I patients, 16 (34%) continued to require chronic narcotic pain medication up to 2 years after surgery whereas only 3 (7%) of the group II patients required narcotic pain medication past 3 months (P = 0.002). Of the group I patients, 24 (51%) had a good or excellent result after surgery and 15 (32%) had a poor result whereas 38 (86%) of the group II patients had a good or excellent result and no patient had a poor result (P < 0.001).

Conclusion

Chronic narcotic use before cervical arthrodesis was found to be associated with continued narcotic use after surgery and worse functional outcomes following surgery. While further studies will be necessary to ascertain if this relationship is generalizable to other orthopaedic procedures and to analyze for potential confounding variables, surgeons may want to counsel their patients about the potential for inferior clinical outcomes if narcotics are used before surgery.

About Author Dr. Kingsley R. Chin

Dr. Kingsley R. Chin, Founder of philosophy and practice of The LES Society and The LESS Institute

Dr. Kingsley R. Chin is a board certified Harvard-trained orthopedic spine surgeon and professor with copious business and information technology exposure. He sees a niche opportunity where medicine, business and info. tech meet – and is uniquely educated at the intersection of these three professions. He has experience as Professor of Clinical Biomedical Sciences & Admissions Committee Member at the Charles E. Schmidt College of Medicine at Florida Atlantic University, Professor of Clinical Orthopedic Surgery at the Herbert Wertheim College of Medicine at Florida International University, Assistant Professor of Orthopaedics at the University of Pennsylvania Medical School, Visiting Spine Surgeon & Professor at the University of the West Indies, Mona, and Adjunct Professor of Clinical Biomedical Studies at the University of Technology, Jamaica.

Learn more about Dr. Chin here and connect via LinkedIn.

About Less Exposure Surgery

Less Exposure Surgery (LES) is based on a new philosophy of performing surgery, leading the charge to prove through bench and clinical outcomes research that LES treatment options are the best solutions – to lowering the cost of healthcare, improving outcomes and increasing patient satisfaction. Learn more at LESSociety.org.

The LES Society philosophy: “Tailor treatment to the individual aiding in the quickest recovery and return to a pain-free lifestyle, using LES® techniques that lessen exposure, preserve unoffending anatomy and utilize new technologies which are safe, easy to adopt and reproducible. These LES®techniques lessen blood loss, surgical time and exposure to radiation and can be safely performed in an outpatient center. Less is more.” – Kingsley R. Chin, MD

About The LESS Institute

The LESS Institute is the world leader center of excellence in Less Exposure Surgery. Our safe, effective outpatient treatments help patients recover quickly, avoid expensive hospital stays and return home to their family the same day. Watch our patient stories, follow us on Facebook and visit TheLESSInstitute.com to learn more.

About SpineFrontier

The above study utilized LES Technology from SpineFrontier – leading provider of LES Technologies and instruments – offering surgeons and patients superior technology and services.

Scientific Paper Author & Citation Details

Authors

Lawrence JT1, London NBohlman HHChin KR.

Author information

  1. Department of Orthopaedic Surgery, University of Pennsylvania Health System, Philadelphia, PA, USA.